
PORT CFNZ 2014 National Data Registry

The Port CFNZ National Data Registry is a research project of Cystic Fibrosis New Zealand. For further information about the CFNZ visit www.cfnz.org.nz

The production of this Data Registry is funded through a conditional grant from

Source of Data: Children, young persons and adults with Cystic Fibrosis in New Zealand who have consented to have their data recorded as part of this national registry

Suggested Citation: PORT CFNZ National Data Registry, 2014 Registry Report, Cystic Fibrosis New Zealand.

Table of Contents

Introduction & Acknowledgements	6
CF Clinics in New Zealand	7
Notes to the Registry	8
Key results at a glance	9
Demographics	10-11
Genotype	12
Respiratory	13
Nutrition	14-16
Medications	17
Microbiology	18-20
IV Episodes	21
Airway Clearance Techniques	22-24
CF-Related Diabetes	25-26
Glossary of Terms	27
Port CFNZ Primary Contacts	27

Introduction & Acknowledgements

The Cystic Fibrosis New Zealand and the PORT CFNZ Steering Committee, are pleased to present The National Cystic Fibrosis Data Registry 2014 Report; data collected on children, young persons and adults with Cystic Fibrosis in New Zealand.

We would like to thank:

- The Nurses, Specialists and Administrators who have worked to enter data enabling a detailed analysis for NZ presented in this report.
- Shares in Life Foundation for providing pivotal funding for database and data entry.
- Canterbury District Health Board for their ongoing commitment to maintain the registry.
- Above all, the children and adults with CF and their families for participating in this process.

This fourth registry report continues to give an accurate picture of people with CF and outcomes for New Zealand with greater than 95% opting to provide anonymous data.

Development of the database will lead to slightly different questions used next year, written exclusively with the New Zealand clinical environment in mind and provide more accurate information for our environment.

We hope you continue to find the information in the report informative and useful.

Associate Professor Cass Byrnes	Dr Richard Laing
Chair Port CFNZ Steering Committee	Port CFNZ Principal Investigator

Port CFNZ Steering Committee

Assoc.Prof Cass Byrnes (Chair)	Starship Children's Hospital & University of Auckland
Dr Richard Laing (PI)	Christchurch Hospital, Christchurch
Dr Mark O'Carroll	Auckland Hospital and Greenlane Centre
Dr Julian Vyas	Starship Children's Hospital, Auckland
Jan Tate	Starship Children's Hospital, Auckland
Tory Crowder	Christchurch Hospital, Christchurch
Robyn Beach	Christchurch Hospital, Christchurch
Viv Isles	Christchurch Hospital, Christchurch
Belinda Burnett	CEO, Cystic Fibrosis New Zealand

CF Clinics in New Zealand

Northland (Paediatrics) Whangarei Hospital, Whangarei

Auckland (Paediatrics and Adults) Starship Children's Health Greenlane Clinical Centre

Waikato (Paediatrics and Adults) Waikato Hospital, Hamilton

Taranaki (Paediatrics) Taranaki Base Hospital, New Plymouth

Bay of Plenty (Paediatrics)

Tauranga Hospital, Tauranga Whakatane Hospital, Whakatane Lakes Hospital, Rotorua

Central Districts (Paediatrics and Adults)

Whanganui Hospital, Whanganui Palmerston North Hospital, Palmerston North

Hawkes Bay (Paediatrics and Adults)

Hawkes Bay District Hospital, Hastings Tairawhiti Hospital, Gisborne

Wellington (Paediatrics and Adults)

Capital and Coast Hospital, Wellington Hutt Valley Hospital, Lower Hutt

Nelson/ Marlborough (Paediatrics and Adults)

Nelson Hospital, Nelson Wairau Hospital, Blenheim

Canterbury/ Westland (Paediatrics and Adults) Christchurch Hospital, Christchurch

Otago (Paediatrics and Adults) Dunedin Hospital, Dunedin

Southland (Paediatrics and Adults)

Kew Hospital, Invercargill

Notes to the Registry

The Data registry gives national statistics. New Zealand has a total CF population comparative to a single clinic in USA/UK. Statistically accurate and relevant data for smaller clinics is difficult given the smaller numbers.

Our smaller population provides significant challenges to statistical interpretation as 'outliers' in terms of late diagnoses and key markers will have an impact on outcomes reported given the smaller numbers. Some decisions were made by the steering committee to exclude those outlier ages and statistics in order to give a more accurate picture of the overall patient outcomes for the country.

The brief commentary provided throughout this report reflects opinion based on our data, and when cited as compared to other registries these are from Australia, UK and USA in the main.

The NZ registry data is becoming more robust and accurate, **we welcome its use in audit and research projects.** A proposal for a project involving this national data base can be made in writing using the form found on the CFNZ website the PORTCFNZ steering committee.

Link: http://www.cfnz.org.nz/our-services/library/downloads/#other

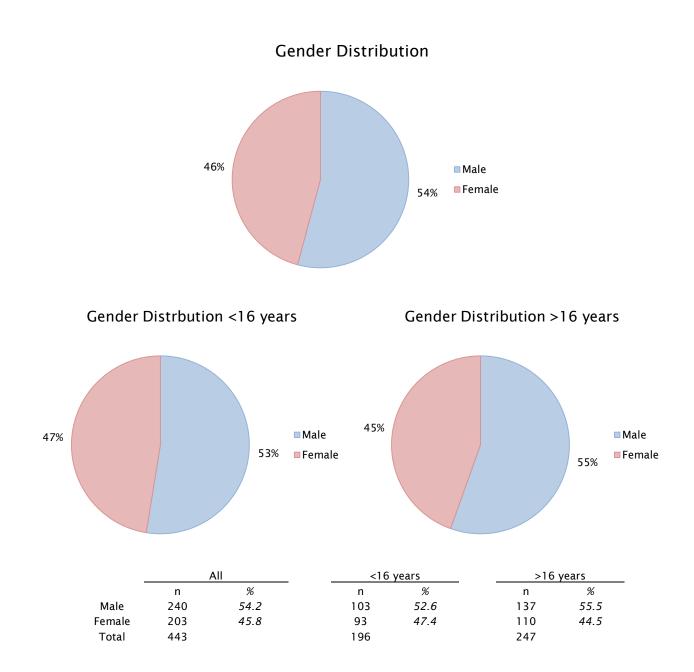
Port CF Steering Committee C/- CFNZ P O Box 8241 Riccarton Christchurch

Administrator: julie@cfnz.org.nz

Key Indicators

	2014	2013	2012	2011
CF patients registered	443	444	423	415
Diagnosis age <1 year	7	5	11	11
Diagnosis age >16 years	2	3	2	
Age in years; median	18.11	17.55	16.15	15.71
PWCF aged >16 years	247 55.8%	239 <i>53.8%</i>	214 50.6%	206 <i>49.6%</i>
Males	240 54.2%	240 54.1%	228 5 <i>3.9%</i>	226 54.6%
Genotyped	429 <i>96.8%</i>	426 <i>95.9%</i>	407 96.2%	364 <i>87.7%</i>
Median FEV1 (% predicted)	85.1%	84.3%	84.5%	80.5%
<16 years	97.7%	96.6%	97.2%	91.6%
>16 years	78.0%	70.7%	70.6%	70.7%

Demographics



Age Distribution

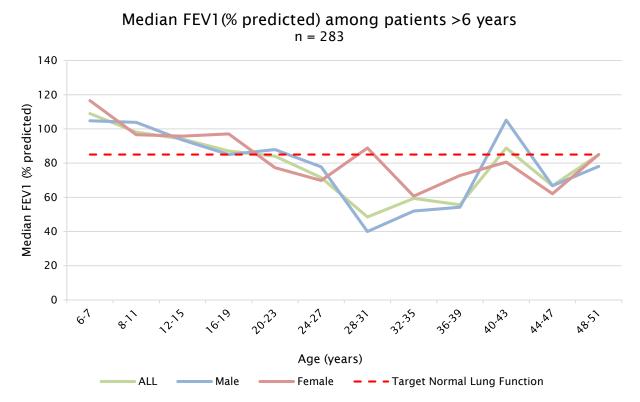
Male	Female
- Marc	

Age (yrs)	All		M	ale	Female		
	n	%	n	%	n	%	
0-3	33	7.4	16	6.7	17	8.4	
4-7	62	14.0	32	13.3	30	14.8	
8-11	47	10.6	24	10.0	23	11.3	
12-15	54	12.2	31	12.9	23	11.3	
16-19	49	11.1	28	11.7	21	10.3	
20-23	48	10.8	29	12.1	19	9.4	
24-27	29	6.5	13	5.4	16	7.9	
28-31	33	7.4	18	7.5	15	7.4	
32-35	23	5.2	12	5.0	11	5.4	
36-39	11	2.5	7	2.9	4	2.0	
40-43	16	3.6	10	4.2	6	3.0	
44-47	11	2.5	7	2.9	4	2.0	
48-51	7	1.6	4	1.7	3	1.5	
52-55	4	0.9	2	0.8	2	1.0	
56-59	4	0.9	1	0.4	3	1.5	
>=60	12	2.7	6	2.5	6	3.0	
Total	443		240		203		
Median	18.1 years						
Range	0.4 - 84.0 year	5					

Over our first years of collecting registry data the median age of PWCF has increased with a corresponding increase in the proportion of adults.

The gender distribution can become less even in adult years - in part because young women can have accelerated disease.

Genotype


429 (96.8%) of 443 patients have been genotyped with a recorded value.

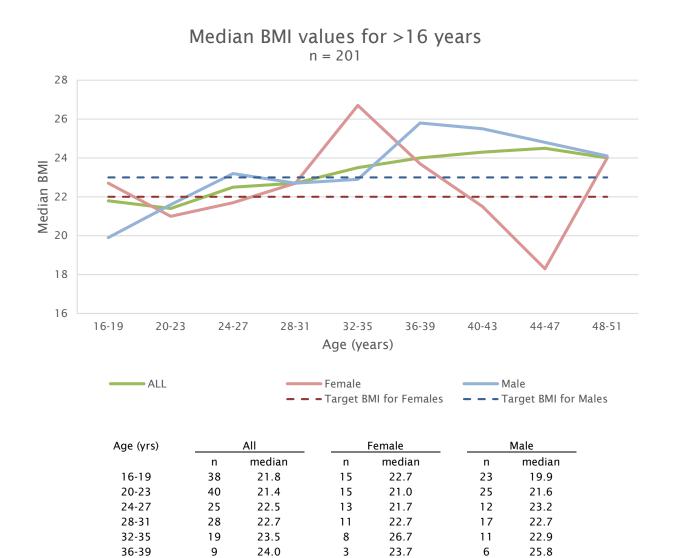
F508del Mutations		n	%
Homozygous F508del		221	51.5
Heterozygous F508del		162	37.8
No F508del or both unidentified		46	10.7
Total		429	
Mutations Identified	c.DNA Name	n	%
F508del	c.1521_1523delCTT	604	70.4
G551D	c.1652G>A	30	3.5
G542X	c.1624G>T	27	3.1
R117H	c.350G>A	21	2.4
G85E	c.254G>A	6	0.7
N1303K	c.3909c>G	5	0.6
3272-26A>G	c.3140-26A>G	5	0.6
^I507	c.1519_1521delATC	4	0.5
1717-1G->A	c.1585-1G>A	4	0.5
3849+10kbC->T	c.3717+12191C>T	4	0.5
Q493X	c.1477C>T	4	0.5
1898+1G->A	c.1766+1G>A	3	0.3
2789+2insA	c.2657+2_2657+3insA	2	0.2
A455E	c.1364C>A	3	0.3
c.3718-2477C>T	c.3718-2477C>T	3	0.3
Other		88	10.3
Unidentified		45	5.2
		858	

Increasingly the genetic mutations will be presented named for their DNA abnormalities (column 2) standardised world-wide. We still know them best by what has come to be called their legacy names (column 1).

It is encouraging to see that the majority have had their genotype determined. This will become increasingly important as new genotype specific drugs potentially become available. As previously mentioned, here in NZ while F508 remains the dominant gene, this is seen less here than in registries from other English speaking countries where it is 85% to 92%, suggesting that our ethnic diversity may contribute less common genes.

Respiratory

Age (yrs)		All		Male	F	emale
	n	median	n	median	n	median
6-7	18	109.0	9	104.8	9	116.6
8-11	37	98.1	18	103.9	19	96.6
12-15	37	94.1	22	93.5	15	95.8
16-19	38	87.0	23	85.0	15	97.1
20-23	33	84.1	21	87.9	12	77.3
24-27	25	71.5	12	77.8	13	69.8
28-31	28	48.5	17	40.0	11	88.8
32-35	19	59.4	11	52.0	8	60.7
36-39	9	55.6	6	54.2	3	72.8
40-43	14	88.9	9	105.1	5	80.6
44-47	7	66.8	5	66.8	2	62.1
48-51	5	85.0	2	78.1	3	85.0
52-55	2	69.2	1	85.6	1	52.8
56-59	4	91.4	1	87.6	3	95.2
>=60	7	61.7	4	64.2	3	61.5
Total	283		161		122	


The slope of lung function (FEV1) over time is very similar to the other registries with our target lung function being greater than 85% which is in keeping with the UK registry. Our median FEV1 for those <16 years and >16 years is comparative to other registries.

The spike in older ages reflects late diagnoses with CF reflecting a more mild or atypical disease, plus loss of those with severe disease. It is more obvious within the smaller numbers that we have in each age bracket in NZ. Other registries have presented the data as the percentage of children and adults with normal, mild, moderate or severely affected lung function.

Nutrition

The dotted line is the marker to target weight for height in children. It appears that we perform well in this parameter in NZ.

6

3

3

1

3

4

85

21.5

18.3

24.0

28.4

24.1

28.6

9

5

2

1

1

4

116

25.5

24.8

24.1

23.8

32.0

22.7

40-43

44-47

48-51

52-55

56-59

>=60

Total

15

8

5

2

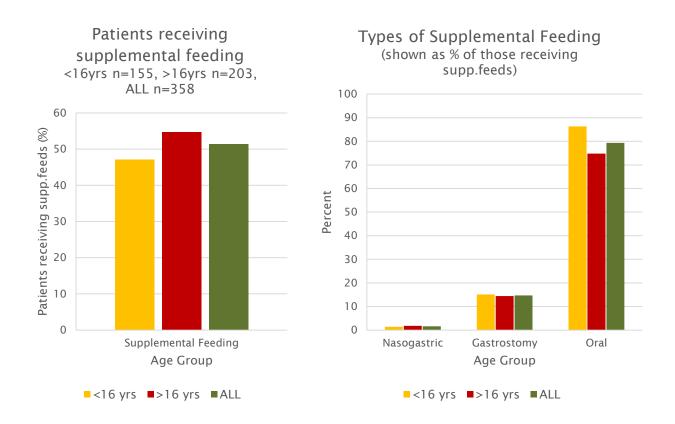
4

8

201

24.3

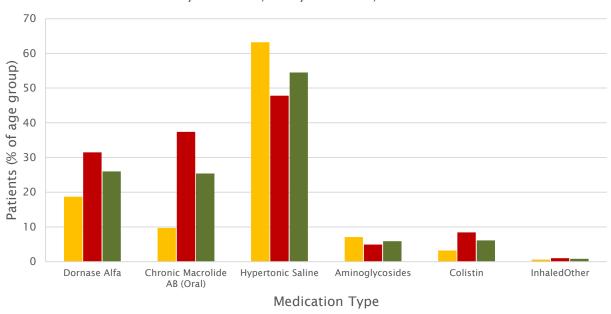
24.5


24.0

26.1

27.2

25.5


~	1	5	~

	<16 yrs, n = 155			:	>16 yrs, n = 203			All, n = 358		
	Yes	%	% <16yrs supp.	Yes	%	% >16 yrs supp.	Yes	%	% All supp.	
Supplemental Feeding	73		47.1	111		54.7	184		51.4	
Nasogastric	1	1.4	0.6	2	1.8	1.0	3	1.6	0.8	
Gastrostomy	11	15.1	7.1	16	14.4	7.9	27	14.7	7.5	
Oral	63	86.3	40.6	83	74.8	40.9	146	79.3	40.8	

The early and high use of supplemental feeding may reflect on the overall good nutritional percentiles presented in previous graphs.

Medications

Medications Prescribed <16 yrs n = 155, >16 yrs n = 203, ALL n=358

<16 yrs (%) ■>16 yrs (%) ■ALL (%)

Medication	<16 yrs,	n = 155	>16 yrs, r	ı = 203	All, n = 358		
	Yes	%	Yes	%	Yes	%	
Dornase Alfa	29	18.7	64	31.5	93	26.0	
Chronic Macrolide AB (Oral)	15	9.7	76	37.4	91	25.4	
Hypertonic Saline	98	63.2	97	47.8	195	54.5	
Aminoglycosides	11	7.1	10	4.9	21	5.9	
Colistin	5	3.2	17	8.4	22	6.1	
InhaledOther	1	0.6	2	1.0	3	0.8	

In New Zealand there is greater use of nebulised hypertonic saline, but less use of the other medications compared to that documented in other registries.

Microbiology

Mycobacteria (NTB)

S.maltophilia

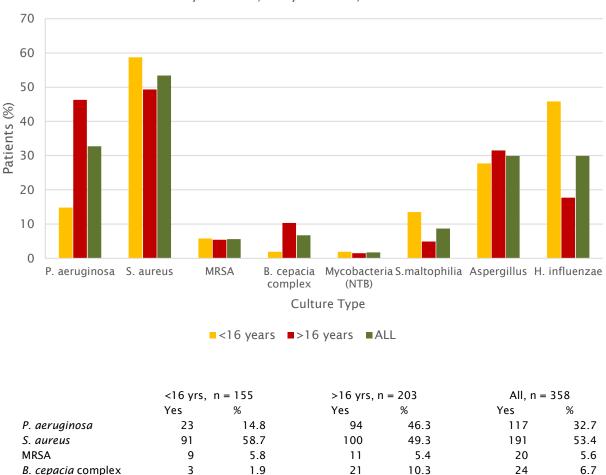
H. influenzae

Aspergillus

3

21

43


71

1.9

135

27.7

45.8

Culture Prevalence <16yrs n=155, >16yrs n=203, ALL n=358

Our levels of *Staphylococcus aureus* are higher that the registries that capture data as 'chronic infection', but similar to the USA which captures the data as 'ever' in the last year.

3

10

64

36

1.5

4.9

31.5

17.7

6

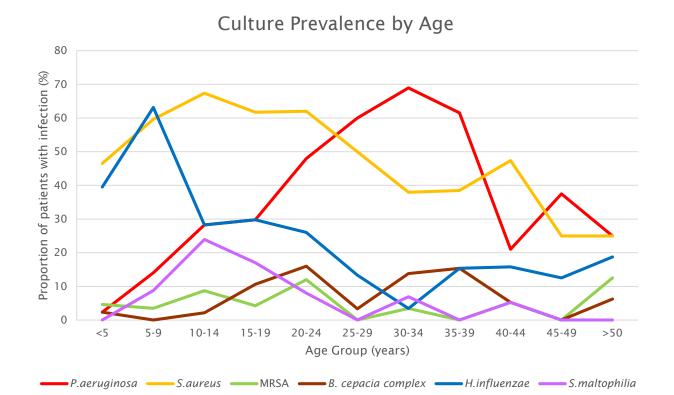
31

107

107

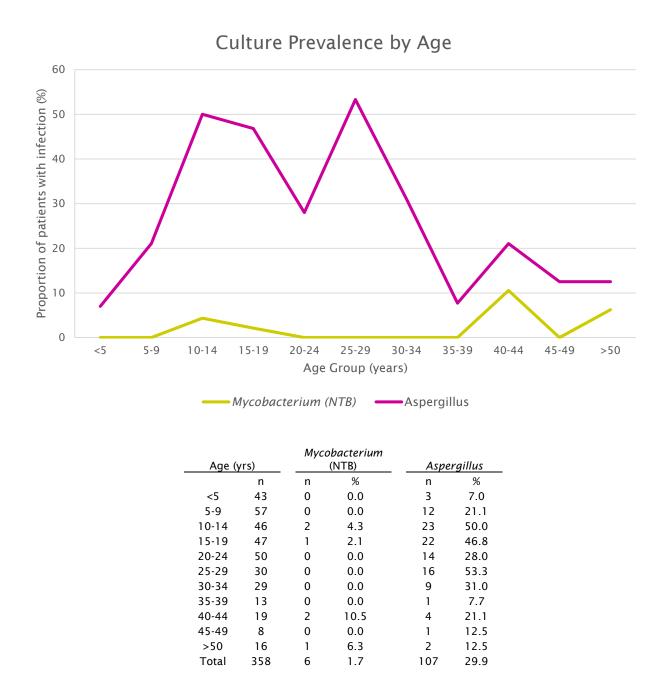
1.7

8.7


29.9

29.9

Our levels of *Pseudomonas aeruginosa* infections seem lower if 'ever' or 'intermittent' infections as well as 'chronic' infection are included. One goal in the UK is to have only 30% of children having P. aeruginosa at the time of transfer to adult clinic.

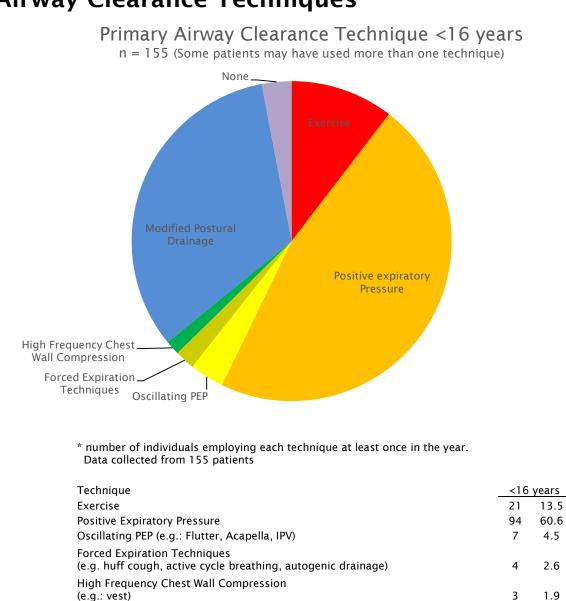

We have more *Burkholderia cepacia*, and less *Stenotrophomonas maltophilia* than elsewhere. We still have low levels of MRSA compared to other registry data but this appears to be increasing over recent years here. Not mentioned here is the division within the *Mycobacteria* categories – in the main we see *Mycobacteria avium intracellulare*, and while that is the same across countries, in some such as Australia they are reporting increased numbers of those with *Mycobacterium abscessus* – a more pathogenic organism.

It remains critical to check for *Mycobacterium* growth in sputum before commencing macrolide therapy and to review this at least annually. If *Mycobacteria* are present – macrolide therapy must be stopped.

Age (rs)	P.aeri	iginosa	S. a	ureus	Ν	IRSA		<i>epacia</i> mplex	H. inf	uenzae	S. ma	altophilia
	n	n	%	n	%	n	%	n	%	 n	%	n	%
<5	43	1	2.3	20	46.5	2	4.7	1	2.3	17	39.5	0	0.0
5-9	57	8	14.0	34	59.6	2	3.5	0	0.0	36	63.2	5	8.8
10-14	46	13	28.3	31	67.4	4	8.7	1	2.2	13	28.3	11	23.9
15-19	47	14	29.8	29	61.7	2	4.3	5	10.6	14	29.8	8	17.0
20-24	50	24	48.0	31	62.0	6	12.0	8	16.0	13	26.0	4	8.0
25-29	30	18	60.0	15	50.0	0	0.0	1	3.3	4	13.3	0	0.0
30-34	29	20	69.0	11	37.9	1	3.4	4	13.8	1	3.4	2	6.9
35-39	13	8	61.5	5	38.5	0	0.0	2	15.4	2	15.4	0	0.0
40-44	19	4	21.1	9	47.4	1	5.3	1	5.3	3	15.8	1	5.3
45-49	8	3	37.5	2	25.0	0	0.0	0	0.0	1	12.5	0	0.0
>50	16	4	25.0	4	25.0	2	12.5	1	6.3	3	18.8	0	0.0
Total	358	117	32.7	191	53.4	20	5.6	24	6.7	107	29.9	31	8.7

The pattern of acquisition of these organisms with age are similar worldwide. The drop off in *P. aeruginosa* infection towards the older years reflects the more mild or atypical CF diagnosed in these older age brackets. It is more marked in this graph as it is based on the smaller numbers than elsewhere.

Rates of Aspergillus presence in respiratory sections here are similar to that reported in Australia.


The presence of NTB seems low - not mentioned here is the division within the *Mycobacteria* categories – in the main we see *M. avium intracellulare*, and while that is the same across countries, in some such as Australia they are reporting increased numbers of those with *M. abscessus* – a more pathogenic organism.

Hospital & Home IVA Days

										Total IVA
			Home IV Days				Hospital IV Days			
Age	n	n	%	Total Days	Mean IVA	n	%	Total Days	Mean IVA	
0-3	21	4	19.0	37	9.3	7	23.7	166	24	203
4-7	42	9	21.4	79	8.8	17	10.1	172	10	251
8-11	36	9	25.0	108	12.0	15	17.4	261	17	369
12-15	36	12	33.3	213	17.8	20	21.8	435	22	648
16-19	38	11	28.9	174	15.8	20	36.6	731	37	905
20-23	40	9	22.5	93	10.3	20	25.0	500	25	593
24-27	25	4	16.0	75	18.8	10	39.0	390	39	465
28-31	23	8	34.8	207	25.9	10	34.6	246	25	453
32-35	20	7	35.0	114	16.3	13	16.5	214	17	328
36-39	9	2	22.2	27	13.5	2	6.0	12	6	39
40-43	16	7	43.8	136	19.4	7	18.3	128	18	264
44-47	8	1	12.5	28	28.0	2	45.5	91	46	119
48-51	7	2	28.6	53	26.5	3	11.0	33	11	86
>52	17	3	17.6	25	8.3	4	5.8	23	6	48
	338	88		1369		150		3402		4771

29% of intravenous antibiotic therapy was given in the home – now even in the very young. In part it depends on the ability to have excellent intravenous access, the severity of the current infection in the individual, and the home environment at any particular time.

One factor that is missing when using home IV therapy is the ability to deliver professional physiotherapy which is equally important in overcoming an exacerbation.

Airway Clearance Techniques

Modified Postural Drainage

None

Total

There are a variety of techniques used as a first option for airway clearance, with nearly half using some airway resistance device.

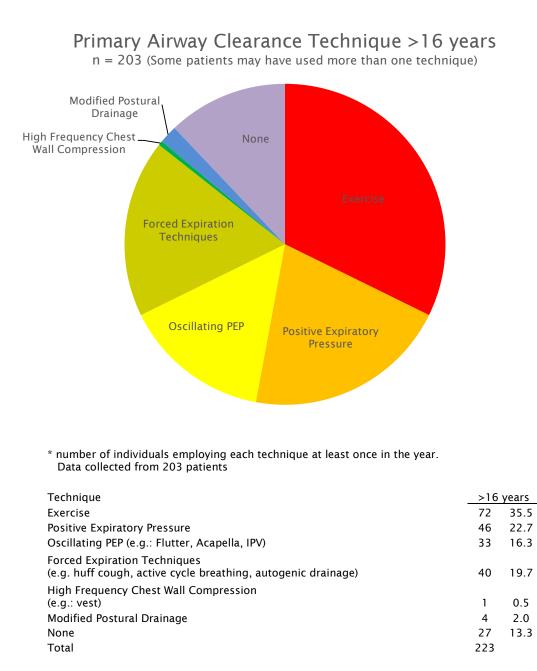
60.6

4.5

2.6

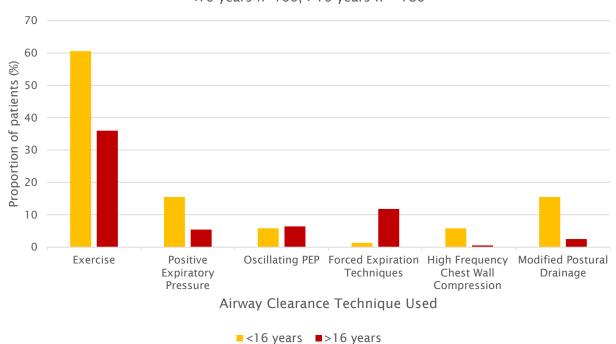
1.9

42.6


3.9

66

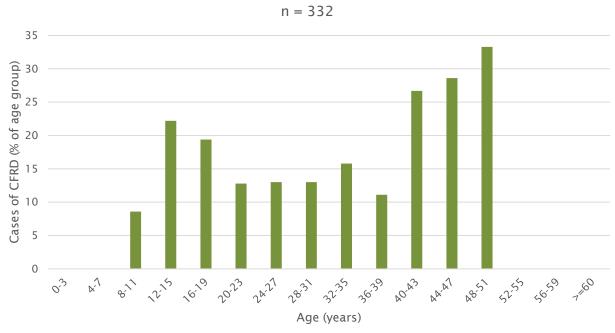
6


201

The percentage of children and young people using no airway clearance technique has generally decreased over the years that we have been collecting the data but with a slight increase from 2.3% last year to 3.9% this year.

More adults than children and younger people use exercise as their primary airway clearance technique, with a similar number across the components using resistance devices.

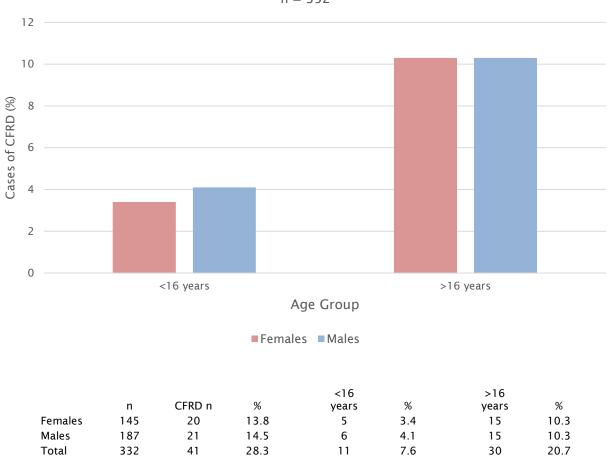
Those using no airway clearance are higher in the adults than in children.


Secondary Airway Clearance Techniques <16 years n=166, >16 years n = 186

Data collected in 166 <16 years, 186 >16 years; Some patients may use more than one technique

	<16	years	>16	5 years
Technique	n	%	n	%
Exercise	94	60.6	73	36.0
Positive Expiratory Pressure	24	15.5	11	5.4
Oscillating PEP (eg: Flutter, Acapella, IPV)	9	5.8	13	6.4
Forced Expiration Techniques (eg:huff cough, active cyce breathing, autogenic drainage)	2	1.3	24	11.8
High Frequency Chest Wall Compression (eg: vest)	9	5.8	1	0.5
Modified Postural Drainage	24	15.5	5	2.5
Total	162		127	

Exercise remains a strong component of airway clearance


CF-Related Diabetes

CFRD

Age (years)	Age n	CFRD n	% Age Group	%CF Population
0-3	25	0	0.0	0.0
4-7	44	0	0.0	0.0
8-11	35	3	8.6	0.9
12-15	36	8	22.2	2.4
16-19	36	7	19.4	2.1
20-23	39	5	12.8	1.5
24-27	23	3	13.0	0.9
28-31	23	3	13.0	0.9
32-35	19	3	15.8	0.9
36-39	9	1	11.1	0.3
40-43	15	4	26.7	1.2
44-47	7	2	28.6	0.6
48-51	6	2	33.3	0.6
52-55	2	0	0.0	0.0
56-59	4	0	0.0	0.0
>=60	9	0	0.0	0.0
	332	41		12.3

Occurrence of CF Related Diabetes n = 352

The overall percentage of persons with CF affected by CFRD is similar to other reports, but the younger age group seems less with similar results since collecting the data. A review of the timeliness and accuracy of our screening may be appropriate.

Glossary of Terms

FEV1	Measurement of lung capacity as forced expired volume in one second
BMI	Body Mass Index: measurement of weight relative to height
N (n)	Total number of people in a dataset
Median	Middle number in a numerically arranged range of numbers
Range	Upper and lower values in a dataset
Paediatric	0 - 16 years of age
Adult	>16 years of age

Principal Investigator	Dr Richard Laing MBChB, FRACP
Chair - Steering Committee	Assoc Prof Catherine Byrnes MBChB, FRACP, MD
Project Administrator	Julie Clemett, Administration Manager CFNZ
Project IT Manager	Andrew Watson, CDHB
Project Medical Statistician	Dr Chris Frampton, Christchurch School of Medicine

All enquiries regarding this Data Registry should be forwarded in the first instance, to:

Julie Clemett CFNZ PO Box 8241, Riccarton Christchurch 8440 julie@cfnz.org.nz Phone 03 341 8014

